Рассчитать высоту треугольника со сторонами 61, 58 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 58 + 7}{2}} \normalsize = 63}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{63(63-61)(63-58)(63-7)}}{58}\normalsize = 6.47688656}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{63(63-61)(63-58)(63-7)}}{61}\normalsize = 6.15835115}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{63(63-61)(63-58)(63-7)}}{7}\normalsize = 53.6656315}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 58 и 7 равна 6.47688656
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 58 и 7 равна 6.15835115
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 58 и 7 равна 53.6656315
Ссылка на результат
?n1=61&n2=58&n3=7
Найти высоту треугольника со сторонами 60, 44 и 17
Найти высоту треугольника со сторонами 80, 70 и 39
Найти высоту треугольника со сторонами 131, 118 и 58
Найти высоту треугольника со сторонами 101, 86 и 18
Найти высоту треугольника со сторонами 136, 98 и 45
Найти высоту треугольника со сторонами 82, 70 и 13
Найти высоту треугольника со сторонами 80, 70 и 39
Найти высоту треугольника со сторонами 131, 118 и 58
Найти высоту треугольника со сторонами 101, 86 и 18
Найти высоту треугольника со сторонами 136, 98 и 45
Найти высоту треугольника со сторонами 82, 70 и 13