Рассчитать высоту треугольника со сторонами 61, 60 и 4
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 60 + 4}{2}} \normalsize = 62.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{62.5(62.5-61)(62.5-60)(62.5-4)}}{60}\normalsize = 3.90312375}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{62.5(62.5-61)(62.5-60)(62.5-4)}}{61}\normalsize = 3.83913811}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{62.5(62.5-61)(62.5-60)(62.5-4)}}{4}\normalsize = 58.5468562}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 60 и 4 равна 3.90312375
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 60 и 4 равна 3.83913811
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 60 и 4 равна 58.5468562
Ссылка на результат
?n1=61&n2=60&n3=4
Найти высоту треугольника со сторонами 115, 112 и 35
Найти высоту треугольника со сторонами 64, 52 и 49
Найти высоту треугольника со сторонами 89, 77 и 76
Найти высоту треугольника со сторонами 60, 51 и 44
Найти высоту треугольника со сторонами 143, 101 и 72
Найти высоту треугольника со сторонами 122, 107 и 59
Найти высоту треугольника со сторонами 64, 52 и 49
Найти высоту треугольника со сторонами 89, 77 и 76
Найти высоту треугольника со сторонами 60, 51 и 44
Найти высоту треугольника со сторонами 143, 101 и 72
Найти высоту треугольника со сторонами 122, 107 и 59