Рассчитать высоту треугольника со сторонами 62, 40 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 40 + 37}{2}} \normalsize = 69.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69.5(69.5-62)(69.5-40)(69.5-37)}}{40}\normalsize = 35.3464439}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69.5(69.5-62)(69.5-40)(69.5-37)}}{62}\normalsize = 22.8041573}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69.5(69.5-62)(69.5-40)(69.5-37)}}{37}\normalsize = 38.2123717}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 40 и 37 равна 35.3464439
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 40 и 37 равна 22.8041573
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 40 и 37 равна 38.2123717
Ссылка на результат
?n1=62&n2=40&n3=37
Найти высоту треугольника со сторонами 100, 100 и 81
Найти высоту треугольника со сторонами 100, 98 и 12
Найти высоту треугольника со сторонами 148, 110 и 108
Найти высоту треугольника со сторонами 127, 125 и 120
Найти высоту треугольника со сторонами 129, 108 и 65
Найти высоту треугольника со сторонами 135, 97 и 41
Найти высоту треугольника со сторонами 100, 98 и 12
Найти высоту треугольника со сторонами 148, 110 и 108
Найти высоту треугольника со сторонами 127, 125 и 120
Найти высоту треугольника со сторонами 129, 108 и 65
Найти высоту треугольника со сторонами 135, 97 и 41