Рассчитать высоту треугольника со сторонами 62, 43 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 43 + 21}{2}} \normalsize = 63}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{63(63-62)(63-43)(63-21)}}{43}\normalsize = 10.6996965}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{63(63-62)(63-43)(63-21)}}{62}\normalsize = 7.42075723}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{63(63-62)(63-43)(63-21)}}{21}\normalsize = 21.9089023}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 43 и 21 равна 10.6996965
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 43 и 21 равна 7.42075723
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 43 и 21 равна 21.9089023
Ссылка на результат
?n1=62&n2=43&n3=21
Найти высоту треугольника со сторонами 101, 68 и 64
Найти высоту треугольника со сторонами 63, 56 и 45
Найти высоту треугольника со сторонами 26, 21 и 10
Найти высоту треугольника со сторонами 145, 98 и 69
Найти высоту треугольника со сторонами 84, 67 и 28
Найти высоту треугольника со сторонами 104, 80 и 73
Найти высоту треугольника со сторонами 63, 56 и 45
Найти высоту треугольника со сторонами 26, 21 и 10
Найти высоту треугольника со сторонами 145, 98 и 69
Найти высоту треугольника со сторонами 84, 67 и 28
Найти высоту треугольника со сторонами 104, 80 и 73