Рассчитать высоту треугольника со сторонами 62, 43 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 43 + 30}{2}} \normalsize = 67.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{67.5(67.5-62)(67.5-43)(67.5-30)}}{43}\normalsize = 27.1639828}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{67.5(67.5-62)(67.5-43)(67.5-30)}}{62}\normalsize = 18.8395365}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{67.5(67.5-62)(67.5-43)(67.5-30)}}{30}\normalsize = 38.9350421}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 43 и 30 равна 27.1639828
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 43 и 30 равна 18.8395365
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 43 и 30 равна 38.9350421
Ссылка на результат
?n1=62&n2=43&n3=30
Найти высоту треугольника со сторонами 69, 42 и 34
Найти высоту треугольника со сторонами 110, 109 и 90
Найти высоту треугольника со сторонами 76, 51 и 46
Найти высоту треугольника со сторонами 105, 105 и 90
Найти высоту треугольника со сторонами 74, 66 и 11
Найти высоту треугольника со сторонами 73, 70 и 47
Найти высоту треугольника со сторонами 110, 109 и 90
Найти высоту треугольника со сторонами 76, 51 и 46
Найти высоту треугольника со сторонами 105, 105 и 90
Найти высоту треугольника со сторонами 74, 66 и 11
Найти высоту треугольника со сторонами 73, 70 и 47