Рассчитать высоту треугольника со сторонами 62, 51 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 51 + 15}{2}} \normalsize = 64}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{64(64-62)(64-51)(64-15)}}{51}\normalsize = 11.1978468}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{64(64-62)(64-51)(64-15)}}{62}\normalsize = 9.21113202}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{64(64-62)(64-51)(64-15)}}{15}\normalsize = 38.072679}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 51 и 15 равна 11.1978468
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 51 и 15 равна 9.21113202
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 51 и 15 равна 38.072679
Ссылка на результат
?n1=62&n2=51&n3=15
Найти высоту треугольника со сторонами 150, 122 и 55
Найти высоту треугольника со сторонами 149, 127 и 107
Найти высоту треугольника со сторонами 140, 122 и 108
Найти высоту треугольника со сторонами 13, 13 и 10
Найти высоту треугольника со сторонами 136, 121 и 49
Найти высоту треугольника со сторонами 97, 80 и 68
Найти высоту треугольника со сторонами 149, 127 и 107
Найти высоту треугольника со сторонами 140, 122 и 108
Найти высоту треугольника со сторонами 13, 13 и 10
Найти высоту треугольника со сторонами 136, 121 и 49
Найти высоту треугольника со сторонами 97, 80 и 68