Рассчитать высоту треугольника со сторонами 62, 51 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 51 + 34}{2}} \normalsize = 73.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{73.5(73.5-62)(73.5-51)(73.5-34)}}{51}\normalsize = 33.9892997}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{73.5(73.5-62)(73.5-51)(73.5-34)}}{62}\normalsize = 27.95894}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{73.5(73.5-62)(73.5-51)(73.5-34)}}{34}\normalsize = 50.9839495}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 51 и 34 равна 33.9892997
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 51 и 34 равна 27.95894
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 51 и 34 равна 50.9839495
Ссылка на результат
?n1=62&n2=51&n3=34
Найти высоту треугольника со сторонами 124, 100 и 54
Найти высоту треугольника со сторонами 129, 120 и 104
Найти высоту треугольника со сторонами 150, 137 и 34
Найти высоту треугольника со сторонами 91, 89 и 10
Найти высоту треугольника со сторонами 142, 126 и 52
Найти высоту треугольника со сторонами 137, 128 и 87
Найти высоту треугольника со сторонами 129, 120 и 104
Найти высоту треугольника со сторонами 150, 137 и 34
Найти высоту треугольника со сторонами 91, 89 и 10
Найти высоту треугольника со сторонами 142, 126 и 52
Найти высоту треугольника со сторонами 137, 128 и 87