Рассчитать высоту треугольника со сторонами 62, 51 и 34

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
p=a+b+c2\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
S=p(pa)(pb)(pc)\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
S=12bhb\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
12bhb=p(pa)(pb)(pc)\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
hb=2p(pa)(pb)(pc)b\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
ha=2p(pa)(pb)(pc)a\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
hc=2p(pa)(pb)(pc)c\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
p=62+51+342=73.5\color{#0000FF}{p = \Large{\frac{62 + 51 + 34}{2}} \normalsize = 73.5}
hb=273.5(73.562)(73.551)(73.534)51=33.9892997\color{#0000FF}{h_b = \Large\frac{2\sqrt{73.5(73.5-62)(73.5-51)(73.5-34)}}{51}\normalsize = 33.9892997}
ha=273.5(73.562)(73.551)(73.534)62=27.95894\color{#0000FF}{h_a = \Large\frac{2\sqrt{73.5(73.5-62)(73.5-51)(73.5-34)}}{62}\normalsize = 27.95894}
hc=273.5(73.562)(73.551)(73.534)34=50.9839495\color{#0000FF}{h_c = \Large\frac{2\sqrt{73.5(73.5-62)(73.5-51)(73.5-34)}}{34}\normalsize = 50.9839495}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 51 и 34 равна 33.9892997
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 51 и 34 равна 27.95894
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 51 и 34 равна 50.9839495
Ссылка на результат
?n1=62&n2=51&n3=34