Рассчитать высоту треугольника со сторонами 62, 52 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 52 + 14}{2}} \normalsize = 64}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{64(64-62)(64-52)(64-14)}}{52}\normalsize = 10.6587742}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{64(64-62)(64-52)(64-14)}}{62}\normalsize = 8.93961707}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{64(64-62)(64-52)(64-14)}}{14}\normalsize = 39.5897327}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 52 и 14 равна 10.6587742
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 52 и 14 равна 8.93961707
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 52 и 14 равна 39.5897327
Ссылка на результат
?n1=62&n2=52&n3=14
Найти высоту треугольника со сторонами 107, 97 и 66
Найти высоту треугольника со сторонами 149, 129 и 84
Найти высоту треугольника со сторонами 127, 87 и 62
Найти высоту треугольника со сторонами 129, 127 и 124
Найти высоту треугольника со сторонами 111, 89 и 57
Найти высоту треугольника со сторонами 95, 95 и 86
Найти высоту треугольника со сторонами 149, 129 и 84
Найти высоту треугольника со сторонами 127, 87 и 62
Найти высоту треугольника со сторонами 129, 127 и 124
Найти высоту треугольника со сторонами 111, 89 и 57
Найти высоту треугольника со сторонами 95, 95 и 86