Рассчитать высоту треугольника со сторонами 62, 53 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 53 + 13}{2}} \normalsize = 64}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{64(64-62)(64-53)(64-13)}}{53}\normalsize = 10.112081}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{64(64-62)(64-53)(64-13)}}{62}\normalsize = 8.64419831}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{64(64-62)(64-53)(64-13)}}{13}\normalsize = 41.2261766}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 53 и 13 равна 10.112081
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 53 и 13 равна 8.64419831
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 53 и 13 равна 41.2261766
Ссылка на результат
?n1=62&n2=53&n3=13
Найти высоту треугольника со сторонами 119, 119 и 14
Найти высоту треугольника со сторонами 65, 65 и 41
Найти высоту треугольника со сторонами 126, 121 и 118
Найти высоту треугольника со сторонами 147, 118 и 101
Найти высоту треугольника со сторонами 89, 80 и 47
Найти высоту треугольника со сторонами 108, 95 и 40
Найти высоту треугольника со сторонами 65, 65 и 41
Найти высоту треугольника со сторонами 126, 121 и 118
Найти высоту треугольника со сторонами 147, 118 и 101
Найти высоту треугольника со сторонами 89, 80 и 47
Найти высоту треугольника со сторонами 108, 95 и 40