Рассчитать высоту треугольника со сторонами 62, 57 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 57 + 19}{2}} \normalsize = 69}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69(69-62)(69-57)(69-19)}}{57}\normalsize = 18.8887984}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69(69-62)(69-57)(69-19)}}{62}\normalsize = 17.3655082}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69(69-62)(69-57)(69-19)}}{19}\normalsize = 56.6663951}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 57 и 19 равна 18.8887984
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 57 и 19 равна 17.3655082
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 57 и 19 равна 56.6663951
Ссылка на результат
?n1=62&n2=57&n3=19
Найти высоту треугольника со сторонами 126, 88 и 71
Найти высоту треугольника со сторонами 107, 82 и 66
Найти высоту треугольника со сторонами 65, 62 и 22
Найти высоту треугольника со сторонами 111, 82 и 39
Найти высоту треугольника со сторонами 144, 104 и 60
Найти высоту треугольника со сторонами 111, 90 и 41
Найти высоту треугольника со сторонами 107, 82 и 66
Найти высоту треугольника со сторонами 65, 62 и 22
Найти высоту треугольника со сторонами 111, 82 и 39
Найти высоту треугольника со сторонами 144, 104 и 60
Найти высоту треугольника со сторонами 111, 90 и 41