Рассчитать высоту треугольника со сторонами 62, 57 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 57 + 8}{2}} \normalsize = 63.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{63.5(63.5-62)(63.5-57)(63.5-8)}}{57}\normalsize = 6.5041538}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{63.5(63.5-62)(63.5-57)(63.5-8)}}{62}\normalsize = 5.97962527}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{63.5(63.5-62)(63.5-57)(63.5-8)}}{8}\normalsize = 46.3420958}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 57 и 8 равна 6.5041538
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 57 и 8 равна 5.97962527
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 57 и 8 равна 46.3420958
Ссылка на результат
?n1=62&n2=57&n3=8
Найти высоту треугольника со сторонами 95, 95 и 55
Найти высоту треугольника со сторонами 147, 87 и 65
Найти высоту треугольника со сторонами 84, 62 и 24
Найти высоту треугольника со сторонами 56, 35 и 31
Найти высоту треугольника со сторонами 86, 78 и 52
Найти высоту треугольника со сторонами 114, 111 и 48
Найти высоту треугольника со сторонами 147, 87 и 65
Найти высоту треугольника со сторонами 84, 62 и 24
Найти высоту треугольника со сторонами 56, 35 и 31
Найти высоту треугольника со сторонами 86, 78 и 52
Найти высоту треугольника со сторонами 114, 111 и 48