Рассчитать высоту треугольника со сторонами 62, 60 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{62 + 60 + 49}{2}} \normalsize = 85.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85.5(85.5-62)(85.5-60)(85.5-49)}}{60}\normalsize = 45.5839816}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85.5(85.5-62)(85.5-60)(85.5-49)}}{62}\normalsize = 44.1135305}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85.5(85.5-62)(85.5-60)(85.5-49)}}{49}\normalsize = 55.8171203}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 62, 60 и 49 равна 45.5839816
Высота треугольника опущенная с вершины A на сторону BC со сторонами 62, 60 и 49 равна 44.1135305
Высота треугольника опущенная с вершины C на сторону AB со сторонами 62, 60 и 49 равна 55.8171203
Ссылка на результат
?n1=62&n2=60&n3=49
Найти высоту треугольника со сторонами 141, 97 и 78
Найти высоту треугольника со сторонами 105, 104 и 43
Найти высоту треугольника со сторонами 122, 100 и 32
Найти высоту треугольника со сторонами 91, 79 и 23
Найти высоту треугольника со сторонами 125, 119 и 57
Найти высоту треугольника со сторонами 128, 127 и 91
Найти высоту треугольника со сторонами 105, 104 и 43
Найти высоту треугольника со сторонами 122, 100 и 32
Найти высоту треугольника со сторонами 91, 79 и 23
Найти высоту треугольника со сторонами 125, 119 и 57
Найти высоту треугольника со сторонами 128, 127 и 91