Рассчитать высоту треугольника со сторонами 63, 41 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 41 + 30}{2}} \normalsize = 67}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{67(67-63)(67-41)(67-30)}}{41}\normalsize = 24.7685779}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{67(67-63)(67-41)(67-30)}}{63}\normalsize = 16.1192332}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{67(67-63)(67-41)(67-30)}}{30}\normalsize = 33.8503898}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 41 и 30 равна 24.7685779
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 41 и 30 равна 16.1192332
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 41 и 30 равна 33.8503898
Ссылка на результат
?n1=63&n2=41&n3=30
Найти высоту треугольника со сторонами 116, 77 и 40
Найти высоту треугольника со сторонами 142, 129 и 24
Найти высоту треугольника со сторонами 147, 118 и 69
Найти высоту треугольника со сторонами 145, 109 и 43
Найти высоту треугольника со сторонами 62, 49 и 24
Найти высоту треугольника со сторонами 77, 53 и 52
Найти высоту треугольника со сторонами 142, 129 и 24
Найти высоту треугольника со сторонами 147, 118 и 69
Найти высоту треугольника со сторонами 145, 109 и 43
Найти высоту треугольника со сторонами 62, 49 и 24
Найти высоту треугольника со сторонами 77, 53 и 52