Рассчитать высоту треугольника со сторонами 63, 45 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 45 + 25}{2}} \normalsize = 66.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{66.5(66.5-63)(66.5-45)(66.5-25)}}{45}\normalsize = 20.2537575}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{66.5(66.5-63)(66.5-45)(66.5-25)}}{63}\normalsize = 14.4669696}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{66.5(66.5-63)(66.5-45)(66.5-25)}}{25}\normalsize = 36.4567634}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 45 и 25 равна 20.2537575
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 45 и 25 равна 14.4669696
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 45 и 25 равна 36.4567634
Ссылка на результат
?n1=63&n2=45&n3=25
Найти высоту треугольника со сторонами 138, 114 и 84
Найти высоту треугольника со сторонами 147, 142 и 73
Найти высоту треугольника со сторонами 61, 47 и 36
Найти высоту треугольника со сторонами 87, 82 и 25
Найти высоту треугольника со сторонами 112, 95 и 38
Найти высоту треугольника со сторонами 93, 49 и 47
Найти высоту треугольника со сторонами 147, 142 и 73
Найти высоту треугольника со сторонами 61, 47 и 36
Найти высоту треугольника со сторонами 87, 82 и 25
Найти высоту треугольника со сторонами 112, 95 и 38
Найти высоту треугольника со сторонами 93, 49 и 47