Рассчитать высоту треугольника со сторонами 63, 46 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 46 + 31}{2}} \normalsize = 70}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70(70-63)(70-46)(70-31)}}{46}\normalsize = 29.4447674}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70(70-63)(70-46)(70-31)}}{63}\normalsize = 21.499354}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70(70-63)(70-46)(70-31)}}{31}\normalsize = 43.6922355}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 46 и 31 равна 29.4447674
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 46 и 31 равна 21.499354
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 46 и 31 равна 43.6922355
Ссылка на результат
?n1=63&n2=46&n3=31
Найти высоту треугольника со сторонами 142, 121 и 36
Найти высоту треугольника со сторонами 89, 88 и 14
Найти высоту треугольника со сторонами 132, 132 и 32
Найти высоту треугольника со сторонами 118, 84 и 52
Найти высоту треугольника со сторонами 115, 114 и 4
Найти высоту треугольника со сторонами 105, 104 и 78
Найти высоту треугольника со сторонами 89, 88 и 14
Найти высоту треугольника со сторонами 132, 132 и 32
Найти высоту треугольника со сторонами 118, 84 и 52
Найти высоту треугольника со сторонами 115, 114 и 4
Найти высоту треугольника со сторонами 105, 104 и 78