Рассчитать высоту треугольника со сторонами 63, 47 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 47 + 27}{2}} \normalsize = 68.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{68.5(68.5-63)(68.5-47)(68.5-27)}}{47}\normalsize = 24.6718688}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{68.5(68.5-63)(68.5-47)(68.5-27)}}{63}\normalsize = 18.4059973}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{68.5(68.5-63)(68.5-47)(68.5-27)}}{27}\normalsize = 42.9473271}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 47 и 27 равна 24.6718688
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 47 и 27 равна 18.4059973
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 47 и 27 равна 42.9473271
Ссылка на результат
?n1=63&n2=47&n3=27
Найти высоту треугольника со сторонами 132, 95 и 78
Найти высоту треугольника со сторонами 63, 61 и 57
Найти высоту треугольника со сторонами 79, 61 и 32
Найти высоту треугольника со сторонами 140, 139 и 30
Найти высоту треугольника со сторонами 107, 104 и 74
Найти высоту треугольника со сторонами 81, 58 и 35
Найти высоту треугольника со сторонами 63, 61 и 57
Найти высоту треугольника со сторонами 79, 61 и 32
Найти высоту треугольника со сторонами 140, 139 и 30
Найти высоту треугольника со сторонами 107, 104 и 74
Найти высоту треугольника со сторонами 81, 58 и 35