Рассчитать высоту треугольника со сторонами 63, 49 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 49 + 45}{2}} \normalsize = 78.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78.5(78.5-63)(78.5-49)(78.5-45)}}{49}\normalsize = 44.7577251}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78.5(78.5-63)(78.5-49)(78.5-45)}}{63}\normalsize = 34.811564}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78.5(78.5-63)(78.5-49)(78.5-45)}}{45}\normalsize = 48.7361896}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 49 и 45 равна 44.7577251
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 49 и 45 равна 34.811564
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 49 и 45 равна 48.7361896
Ссылка на результат
?n1=63&n2=49&n3=45
Найти высоту треугольника со сторонами 120, 93 и 75
Найти высоту треугольника со сторонами 150, 114 и 69
Найти высоту треугольника со сторонами 146, 128 и 34
Найти высоту треугольника со сторонами 140, 125 и 124
Найти высоту треугольника со сторонами 125, 89 и 73
Найти высоту треугольника со сторонами 36, 29 и 8
Найти высоту треугольника со сторонами 150, 114 и 69
Найти высоту треугольника со сторонами 146, 128 и 34
Найти высоту треугольника со сторонами 140, 125 и 124
Найти высоту треугольника со сторонами 125, 89 и 73
Найти высоту треугольника со сторонами 36, 29 и 8