Рассчитать высоту треугольника со сторонами 63, 52 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 52 + 37}{2}} \normalsize = 76}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{76(76-63)(76-52)(76-37)}}{52}\normalsize = 36.986484}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{76(76-63)(76-52)(76-37)}}{63}\normalsize = 30.5285265}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{76(76-63)(76-52)(76-37)}}{37}\normalsize = 51.9810046}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 52 и 37 равна 36.986484
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 52 и 37 равна 30.5285265
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 52 и 37 равна 51.9810046
Ссылка на результат
?n1=63&n2=52&n3=37
Найти высоту треугольника со сторонами 142, 140 и 107
Найти высоту треугольника со сторонами 74, 72 и 25
Найти высоту треугольника со сторонами 149, 129 и 22
Найти высоту треугольника со сторонами 125, 80 и 79
Найти высоту треугольника со сторонами 133, 116 и 27
Найти высоту треугольника со сторонами 148, 137 и 22
Найти высоту треугольника со сторонами 74, 72 и 25
Найти высоту треугольника со сторонами 149, 129 и 22
Найти высоту треугольника со сторонами 125, 80 и 79
Найти высоту треугольника со сторонами 133, 116 и 27
Найти высоту треугольника со сторонами 148, 137 и 22