Рассчитать высоту треугольника со сторонами 63, 52 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 52 + 38}{2}} \normalsize = 76.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{76.5(76.5-63)(76.5-52)(76.5-38)}}{52}\normalsize = 37.9610014}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{76.5(76.5-63)(76.5-52)(76.5-38)}}{63}\normalsize = 31.3328901}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{76.5(76.5-63)(76.5-52)(76.5-38)}}{38}\normalsize = 51.9466335}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 52 и 38 равна 37.9610014
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 52 и 38 равна 31.3328901
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 52 и 38 равна 51.9466335
Ссылка на результат
?n1=63&n2=52&n3=38
Найти высоту треугольника со сторонами 132, 128 и 34
Найти высоту треугольника со сторонами 77, 74 и 12
Найти высоту треугольника со сторонами 91, 83 и 79
Найти высоту треугольника со сторонами 35, 31 и 18
Найти высоту треугольника со сторонами 114, 75 и 52
Найти высоту треугольника со сторонами 127, 104 и 53
Найти высоту треугольника со сторонами 77, 74 и 12
Найти высоту треугольника со сторонами 91, 83 и 79
Найти высоту треугольника со сторонами 35, 31 и 18
Найти высоту треугольника со сторонами 114, 75 и 52
Найти высоту треугольника со сторонами 127, 104 и 53