Рассчитать высоту треугольника со сторонами 63, 53 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 53 + 13}{2}} \normalsize = 64.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{64.5(64.5-63)(64.5-53)(64.5-13)}}{53}\normalsize = 9.03300286}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{64.5(64.5-63)(64.5-53)(64.5-13)}}{63}\normalsize = 7.59919288}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{64.5(64.5-63)(64.5-53)(64.5-13)}}{13}\normalsize = 36.8268578}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 53 и 13 равна 9.03300286
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 53 и 13 равна 7.59919288
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 53 и 13 равна 36.8268578
Ссылка на результат
?n1=63&n2=53&n3=13
Найти высоту треугольника со сторонами 115, 74 и 46
Найти высоту треугольника со сторонами 142, 124 и 36
Найти высоту треугольника со сторонами 139, 101 и 88
Найти высоту треугольника со сторонами 114, 99 и 71
Найти высоту треугольника со сторонами 97, 83 и 69
Найти высоту треугольника со сторонами 88, 78 и 24
Найти высоту треугольника со сторонами 142, 124 и 36
Найти высоту треугольника со сторонами 139, 101 и 88
Найти высоту треугольника со сторонами 114, 99 и 71
Найти высоту треугольника со сторонами 97, 83 и 69
Найти высоту треугольника со сторонами 88, 78 и 24