Рассчитать высоту треугольника со сторонами 63, 56 и 22
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 56 + 22}{2}} \normalsize = 70.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70.5(70.5-63)(70.5-56)(70.5-22)}}{56}\normalsize = 21.7782024}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70.5(70.5-63)(70.5-56)(70.5-22)}}{63}\normalsize = 19.3584021}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70.5(70.5-63)(70.5-56)(70.5-22)}}{22}\normalsize = 55.4354242}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 56 и 22 равна 21.7782024
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 56 и 22 равна 19.3584021
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 56 и 22 равна 55.4354242
Ссылка на результат
?n1=63&n2=56&n3=22
Найти высоту треугольника со сторонами 127, 80 и 72
Найти высоту треугольника со сторонами 110, 106 и 101
Найти высоту треугольника со сторонами 86, 82 и 13
Найти высоту треугольника со сторонами 111, 101 и 21
Найти высоту треугольника со сторонами 128, 114 и 90
Найти высоту треугольника со сторонами 122, 122 и 98
Найти высоту треугольника со сторонами 110, 106 и 101
Найти высоту треугольника со сторонами 86, 82 и 13
Найти высоту треугольника со сторонами 111, 101 и 21
Найти высоту треугольника со сторонами 128, 114 и 90
Найти высоту треугольника со сторонами 122, 122 и 98