Рассчитать высоту треугольника со сторонами 63, 57 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 57 + 18}{2}} \normalsize = 69}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69(69-63)(69-57)(69-18)}}{57}\normalsize = 17.6616397}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69(69-63)(69-57)(69-18)}}{63}\normalsize = 15.9795788}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69(69-63)(69-57)(69-18)}}{18}\normalsize = 55.9285258}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 57 и 18 равна 17.6616397
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 57 и 18 равна 15.9795788
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 57 и 18 равна 55.9285258
Ссылка на результат
?n1=63&n2=57&n3=18
Найти высоту треугольника со сторонами 82, 82 и 33
Найти высоту треугольника со сторонами 129, 111 и 58
Найти высоту треугольника со сторонами 130, 127 и 78
Найти высоту треугольника со сторонами 99, 87 и 58
Найти высоту треугольника со сторонами 104, 93 и 39
Найти высоту треугольника со сторонами 140, 138 и 23
Найти высоту треугольника со сторонами 129, 111 и 58
Найти высоту треугольника со сторонами 130, 127 и 78
Найти высоту треугольника со сторонами 99, 87 и 58
Найти высоту треугольника со сторонами 104, 93 и 39
Найти высоту треугольника со сторонами 140, 138 и 23