Рассчитать высоту треугольника со сторонами 63, 62 и 14

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 62 + 14}{2}} \normalsize = 69.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69.5(69.5-63)(69.5-62)(69.5-14)}}{62}\normalsize = 13.9882862}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69.5(69.5-63)(69.5-62)(69.5-14)}}{63}\normalsize = 13.7662499}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69.5(69.5-63)(69.5-62)(69.5-14)}}{14}\normalsize = 61.9481247}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 62 и 14 равна 13.9882862
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 62 и 14 равна 13.7662499
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 62 и 14 равна 61.9481247
Ссылка на результат
?n1=63&n2=62&n3=14