Рассчитать высоту треугольника со сторонами 63, 63 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 63 + 20}{2}} \normalsize = 73}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{73(73-63)(73-63)(73-20)}}{63}\normalsize = 19.7464401}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{73(73-63)(73-63)(73-20)}}{63}\normalsize = 19.7464401}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{73(73-63)(73-63)(73-20)}}{20}\normalsize = 62.2012862}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 63 и 20 равна 19.7464401
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 63 и 20 равна 19.7464401
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 63 и 20 равна 62.2012862
Ссылка на результат
?n1=63&n2=63&n3=20
Найти высоту треугольника со сторонами 139, 75 и 67
Найти высоту треугольника со сторонами 98, 88 и 61
Найти высоту треугольника со сторонами 89, 83 и 71
Найти высоту треугольника со сторонами 130, 105 и 32
Найти высоту треугольника со сторонами 88, 50 и 40
Найти высоту треугольника со сторонами 108, 72 и 45
Найти высоту треугольника со сторонами 98, 88 и 61
Найти высоту треугольника со сторонами 89, 83 и 71
Найти высоту треугольника со сторонами 130, 105 и 32
Найти высоту треугольника со сторонами 88, 50 и 40
Найти высоту треугольника со сторонами 108, 72 и 45