Рассчитать высоту треугольника со сторонами 63, 63 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{63 + 63 + 6}{2}} \normalsize = 66}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{66(66-63)(66-63)(66-6)}}{63}\normalsize = 5.99319342}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{66(66-63)(66-63)(66-6)}}{63}\normalsize = 5.99319342}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{66(66-63)(66-63)(66-6)}}{6}\normalsize = 62.9285309}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 63, 63 и 6 равна 5.99319342
Высота треугольника опущенная с вершины A на сторону BC со сторонами 63, 63 и 6 равна 5.99319342
Высота треугольника опущенная с вершины C на сторону AB со сторонами 63, 63 и 6 равна 62.9285309
Ссылка на результат
?n1=63&n2=63&n3=6
Найти высоту треугольника со сторонами 138, 88 и 78
Найти высоту треугольника со сторонами 139, 126 и 64
Найти высоту треугольника со сторонами 112, 97 и 57
Найти высоту треугольника со сторонами 147, 136 и 105
Найти высоту треугольника со сторонами 136, 115 и 46
Найти высоту треугольника со сторонами 119, 68 и 63
Найти высоту треугольника со сторонами 139, 126 и 64
Найти высоту треугольника со сторонами 112, 97 и 57
Найти высоту треугольника со сторонами 147, 136 и 105
Найти высоту треугольника со сторонами 136, 115 и 46
Найти высоту треугольника со сторонами 119, 68 и 63