Рассчитать высоту треугольника со сторонами 64, 40 и 29
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{64 + 40 + 29}{2}} \normalsize = 66.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{66.5(66.5-64)(66.5-40)(66.5-29)}}{40}\normalsize = 20.3230742}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{66.5(66.5-64)(66.5-40)(66.5-29)}}{64}\normalsize = 12.7019214}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{66.5(66.5-64)(66.5-40)(66.5-29)}}{29}\normalsize = 28.0318264}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 64, 40 и 29 равна 20.3230742
Высота треугольника опущенная с вершины A на сторону BC со сторонами 64, 40 и 29 равна 12.7019214
Высота треугольника опущенная с вершины C на сторону AB со сторонами 64, 40 и 29 равна 28.0318264
Ссылка на результат
?n1=64&n2=40&n3=29
Найти высоту треугольника со сторонами 120, 120 и 44
Найти высоту треугольника со сторонами 135, 133 и 29
Найти высоту треугольника со сторонами 119, 115 и 91
Найти высоту треугольника со сторонами 115, 99 и 81
Найти высоту треугольника со сторонами 104, 80 и 37
Найти высоту треугольника со сторонами 83, 74 и 73
Найти высоту треугольника со сторонами 135, 133 и 29
Найти высоту треугольника со сторонами 119, 115 и 91
Найти высоту треугольника со сторонами 115, 99 и 81
Найти высоту треугольника со сторонами 104, 80 и 37
Найти высоту треугольника со сторонами 83, 74 и 73