Рассчитать высоту треугольника со сторонами 64, 50 и 34

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{64 + 50 + 34}{2}} \normalsize = 74}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74(74-64)(74-50)(74-34)}}{50}\normalsize = 33.714092}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74(74-64)(74-50)(74-34)}}{64}\normalsize = 26.3391344}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74(74-64)(74-50)(74-34)}}{34}\normalsize = 49.5795471}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 64, 50 и 34 равна 33.714092
Высота треугольника опущенная с вершины A на сторону BC со сторонами 64, 50 и 34 равна 26.3391344
Высота треугольника опущенная с вершины C на сторону AB со сторонами 64, 50 и 34 равна 49.5795471
Ссылка на результат
?n1=64&n2=50&n3=34