Рассчитать высоту треугольника со сторонами 64, 59 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{64 + 59 + 25}{2}} \normalsize = 74}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74(74-64)(74-59)(74-25)}}{59}\normalsize = 24.9998564}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74(74-64)(74-59)(74-25)}}{64}\normalsize = 23.0467426}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74(74-64)(74-59)(74-25)}}{25}\normalsize = 58.999661}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 64, 59 и 25 равна 24.9998564
Высота треугольника опущенная с вершины A на сторону BC со сторонами 64, 59 и 25 равна 23.0467426
Высота треугольника опущенная с вершины C на сторону AB со сторонами 64, 59 и 25 равна 58.999661
Ссылка на результат
?n1=64&n2=59&n3=25
Найти высоту треугольника со сторонами 117, 89 и 88
Найти высоту треугольника со сторонами 140, 128 и 107
Найти высоту треугольника со сторонами 121, 96 и 32
Найти высоту треугольника со сторонами 133, 128 и 8
Найти высоту треугольника со сторонами 104, 87 и 67
Найти высоту треугольника со сторонами 26, 22 и 5
Найти высоту треугольника со сторонами 140, 128 и 107
Найти высоту треугольника со сторонами 121, 96 и 32
Найти высоту треугольника со сторонами 133, 128 и 8
Найти высоту треугольника со сторонами 104, 87 и 67
Найти высоту треугольника со сторонами 26, 22 и 5