Рассчитать высоту треугольника со сторонами 64, 63 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{64 + 63 + 19}{2}} \normalsize = 73}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{73(73-64)(73-63)(73-19)}}{63}\normalsize = 18.9090196}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{73(73-64)(73-63)(73-19)}}{64}\normalsize = 18.6135661}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{73(73-64)(73-63)(73-19)}}{19}\normalsize = 62.698328}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 64, 63 и 19 равна 18.9090196
Высота треугольника опущенная с вершины A на сторону BC со сторонами 64, 63 и 19 равна 18.6135661
Высота треугольника опущенная с вершины C на сторону AB со сторонами 64, 63 и 19 равна 62.698328
Ссылка на результат
?n1=64&n2=63&n3=19
Найти высоту треугольника со сторонами 116, 104 и 100
Найти высоту треугольника со сторонами 150, 110 и 56
Найти высоту треугольника со сторонами 75, 68 и 16
Найти высоту треугольника со сторонами 45, 45 и 23
Найти высоту треугольника со сторонами 136, 133 и 55
Найти высоту треугольника со сторонами 133, 117 и 65
Найти высоту треугольника со сторонами 150, 110 и 56
Найти высоту треугольника со сторонами 75, 68 и 16
Найти высоту треугольника со сторонами 45, 45 и 23
Найти высоту треугольника со сторонами 136, 133 и 55
Найти высоту треугольника со сторонами 133, 117 и 65