Рассчитать высоту треугольника со сторонами 65, 41 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{65 + 41 + 31}{2}} \normalsize = 68.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{68.5(68.5-65)(68.5-41)(68.5-31)}}{41}\normalsize = 24.2553434}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{68.5(68.5-65)(68.5-41)(68.5-31)}}{65}\normalsize = 15.2995243}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{68.5(68.5-65)(68.5-41)(68.5-31)}}{31}\normalsize = 32.0796477}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 65, 41 и 31 равна 24.2553434
Высота треугольника опущенная с вершины A на сторону BC со сторонами 65, 41 и 31 равна 15.2995243
Высота треугольника опущенная с вершины C на сторону AB со сторонами 65, 41 и 31 равна 32.0796477
Ссылка на результат
?n1=65&n2=41&n3=31
Найти высоту треугольника со сторонами 147, 125 и 36
Найти высоту треугольника со сторонами 142, 94 и 89
Найти высоту треугольника со сторонами 102, 99 и 9
Найти высоту треугольника со сторонами 104, 94 и 11
Найти высоту треугольника со сторонами 126, 126 и 117
Найти высоту треугольника со сторонами 127, 93 и 42
Найти высоту треугольника со сторонами 142, 94 и 89
Найти высоту треугольника со сторонами 102, 99 и 9
Найти высоту треугольника со сторонами 104, 94 и 11
Найти высоту треугольника со сторонами 126, 126 и 117
Найти высоту треугольника со сторонами 127, 93 и 42