Рассчитать высоту треугольника со сторонами 65, 43 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{65 + 43 + 42}{2}} \normalsize = 75}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75(75-65)(75-43)(75-42)}}{43}\normalsize = 41.3927357}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75(75-65)(75-43)(75-42)}}{65}\normalsize = 27.3828867}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75(75-65)(75-43)(75-42)}}{42}\normalsize = 42.3782771}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 65, 43 и 42 равна 41.3927357
Высота треугольника опущенная с вершины A на сторону BC со сторонами 65, 43 и 42 равна 27.3828867
Высота треугольника опущенная с вершины C на сторону AB со сторонами 65, 43 и 42 равна 42.3782771
Ссылка на результат
?n1=65&n2=43&n3=42
Найти высоту треугольника со сторонами 150, 113 и 110
Найти высоту треугольника со сторонами 90, 77 и 74
Найти высоту треугольника со сторонами 77, 71 и 30
Найти высоту треугольника со сторонами 136, 117 и 43
Найти высоту треугольника со сторонами 90, 87 и 65
Найти высоту треугольника со сторонами 56, 38 и 23
Найти высоту треугольника со сторонами 90, 77 и 74
Найти высоту треугольника со сторонами 77, 71 и 30
Найти высоту треугольника со сторонами 136, 117 и 43
Найти высоту треугольника со сторонами 90, 87 и 65
Найти высоту треугольника со сторонами 56, 38 и 23