Рассчитать высоту треугольника со сторонами 65, 44 и 42

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{65 + 44 + 42}{2}} \normalsize = 75.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{75.5(75.5-65)(75.5-44)(75.5-42)}}{44}\normalsize = 41.5741257}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{75.5(75.5-65)(75.5-44)(75.5-42)}}{65}\normalsize = 28.1424851}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{75.5(75.5-65)(75.5-44)(75.5-42)}}{42}\normalsize = 43.553846}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 65, 44 и 42 равна 41.5741257
Высота треугольника опущенная с вершины A на сторону BC со сторонами 65, 44 и 42 равна 28.1424851
Высота треугольника опущенная с вершины C на сторону AB со сторонами 65, 44 и 42 равна 43.553846
Ссылка на результат
?n1=65&n2=44&n3=42