Рассчитать высоту треугольника со сторонами 65, 54 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{65 + 54 + 48}{2}} \normalsize = 83.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83.5(83.5-65)(83.5-54)(83.5-48)}}{54}\normalsize = 47.1075505}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83.5(83.5-65)(83.5-54)(83.5-48)}}{65}\normalsize = 39.1355035}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83.5(83.5-65)(83.5-54)(83.5-48)}}{48}\normalsize = 52.9959943}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 65, 54 и 48 равна 47.1075505
Высота треугольника опущенная с вершины A на сторону BC со сторонами 65, 54 и 48 равна 39.1355035
Высота треугольника опущенная с вершины C на сторону AB со сторонами 65, 54 и 48 равна 52.9959943
Ссылка на результат
?n1=65&n2=54&n3=48
Найти высоту треугольника со сторонами 138, 137 и 79
Найти высоту треугольника со сторонами 30, 27 и 19
Найти высоту треугольника со сторонами 74, 59 и 26
Найти высоту треугольника со сторонами 133, 83 и 78
Найти высоту треугольника со сторонами 83, 48 и 43
Найти высоту треугольника со сторонами 145, 110 и 55
Найти высоту треугольника со сторонами 30, 27 и 19
Найти высоту треугольника со сторонами 74, 59 и 26
Найти высоту треугольника со сторонами 133, 83 и 78
Найти высоту треугольника со сторонами 83, 48 и 43
Найти высоту треугольника со сторонами 145, 110 и 55