Рассчитать высоту треугольника со сторонами 65, 56 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{65 + 56 + 35}{2}} \normalsize = 78}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78(78-65)(78-56)(78-35)}}{56}\normalsize = 34.9789295}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78(78-65)(78-56)(78-35)}}{65}\normalsize = 30.1356931}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78(78-65)(78-56)(78-35)}}{35}\normalsize = 55.9662872}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 65, 56 и 35 равна 34.9789295
Высота треугольника опущенная с вершины A на сторону BC со сторонами 65, 56 и 35 равна 30.1356931
Высота треугольника опущенная с вершины C на сторону AB со сторонами 65, 56 и 35 равна 55.9662872
Ссылка на результат
?n1=65&n2=56&n3=35
Найти высоту треугольника со сторонами 96, 91 и 42
Найти высоту треугольника со сторонами 92, 80 и 30
Найти высоту треугольника со сторонами 144, 131 и 78
Найти высоту треугольника со сторонами 126, 122 и 62
Найти высоту треугольника со сторонами 136, 99 и 93
Найти высоту треугольника со сторонами 93, 71 и 35
Найти высоту треугольника со сторонами 92, 80 и 30
Найти высоту треугольника со сторонами 144, 131 и 78
Найти высоту треугольника со сторонами 126, 122 и 62
Найти высоту треугольника со сторонами 136, 99 и 93
Найти высоту треугольника со сторонами 93, 71 и 35