Рассчитать высоту треугольника со сторонами 65, 58 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{65 + 58 + 51}{2}} \normalsize = 87}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{87(87-65)(87-58)(87-51)}}{58}\normalsize = 48.7442304}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{87(87-65)(87-58)(87-51)}}{65}\normalsize = 43.4948518}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{87(87-65)(87-58)(87-51)}}{51}\normalsize = 55.434615}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 65, 58 и 51 равна 48.7442304
Высота треугольника опущенная с вершины A на сторону BC со сторонами 65, 58 и 51 равна 43.4948518
Высота треугольника опущенная с вершины C на сторону AB со сторонами 65, 58 и 51 равна 55.434615
Ссылка на результат
?n1=65&n2=58&n3=51
Найти высоту треугольника со сторонами 118, 114 и 70
Найти высоту треугольника со сторонами 100, 97 и 20
Найти высоту треугольника со сторонами 115, 107 и 38
Найти высоту треугольника со сторонами 125, 103 и 68
Найти высоту треугольника со сторонами 127, 111 и 91
Найти высоту треугольника со сторонами 63, 50 и 46
Найти высоту треугольника со сторонами 100, 97 и 20
Найти высоту треугольника со сторонами 115, 107 и 38
Найти высоту треугольника со сторонами 125, 103 и 68
Найти высоту треугольника со сторонами 127, 111 и 91
Найти высоту треугольника со сторонами 63, 50 и 46