Рассчитать высоту треугольника со сторонами 65, 61 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{65 + 61 + 31}{2}} \normalsize = 78.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78.5(78.5-65)(78.5-61)(78.5-31)}}{61}\normalsize = 30.7728488}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78.5(78.5-65)(78.5-61)(78.5-31)}}{65}\normalsize = 28.879135}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78.5(78.5-65)(78.5-61)(78.5-31)}}{31}\normalsize = 60.553025}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 65, 61 и 31 равна 30.7728488
Высота треугольника опущенная с вершины A на сторону BC со сторонами 65, 61 и 31 равна 28.879135
Высота треугольника опущенная с вершины C на сторону AB со сторонами 65, 61 и 31 равна 60.553025
Ссылка на результат
?n1=65&n2=61&n3=31
Найти высоту треугольника со сторонами 107, 72 и 41
Найти высоту треугольника со сторонами 131, 108 и 26
Найти высоту треугольника со сторонами 82, 74 и 36
Найти высоту треугольника со сторонами 144, 139 и 103
Найти высоту треугольника со сторонами 146, 109 и 87
Найти высоту треугольника со сторонами 148, 140 и 32
Найти высоту треугольника со сторонами 131, 108 и 26
Найти высоту треугольника со сторонами 82, 74 и 36
Найти высоту треугольника со сторонами 144, 139 и 103
Найти высоту треугольника со сторонами 146, 109 и 87
Найти высоту треугольника со сторонами 148, 140 и 32