Рассчитать высоту треугольника со сторонами 65, 62 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{65 + 62 + 43}{2}} \normalsize = 85}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85(85-65)(85-62)(85-43)}}{62}\normalsize = 41.3381779}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85(85-65)(85-62)(85-43)}}{65}\normalsize = 39.430262}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85(85-65)(85-62)(85-43)}}{43}\normalsize = 59.6038844}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 65, 62 и 43 равна 41.3381779
Высота треугольника опущенная с вершины A на сторону BC со сторонами 65, 62 и 43 равна 39.430262
Высота треугольника опущенная с вершины C на сторону AB со сторонами 65, 62 и 43 равна 59.6038844
Ссылка на результат
?n1=65&n2=62&n3=43
Найти высоту треугольника со сторонами 99, 70 и 42
Найти высоту треугольника со сторонами 81, 74 и 52
Найти высоту треугольника со сторонами 129, 96 и 42
Найти высоту треугольника со сторонами 141, 119 и 62
Найти высоту треугольника со сторонами 133, 120 и 84
Найти высоту треугольника со сторонами 120, 120 и 118
Найти высоту треугольника со сторонами 81, 74 и 52
Найти высоту треугольника со сторонами 129, 96 и 42
Найти высоту треугольника со сторонами 141, 119 и 62
Найти высоту треугольника со сторонами 133, 120 и 84
Найти высоту треугольника со сторонами 120, 120 и 118