Рассчитать высоту треугольника со сторонами 65, 62 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{65 + 62 + 7}{2}} \normalsize = 67}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{67(67-65)(67-62)(67-7)}}{62}\normalsize = 6.46772182}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{67(67-65)(67-62)(67-7)}}{65}\normalsize = 6.16921159}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{67(67-65)(67-62)(67-7)}}{7}\normalsize = 57.2855362}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 65, 62 и 7 равна 6.46772182
Высота треугольника опущенная с вершины A на сторону BC со сторонами 65, 62 и 7 равна 6.16921159
Высота треугольника опущенная с вершины C на сторону AB со сторонами 65, 62 и 7 равна 57.2855362
Ссылка на результат
?n1=65&n2=62&n3=7
Найти высоту треугольника со сторонами 99, 88 и 24
Найти высоту треугольника со сторонами 117, 116 и 48
Найти высоту треугольника со сторонами 116, 106 и 82
Найти высоту треугольника со сторонами 91, 83 и 26
Найти высоту треугольника со сторонами 150, 142 и 112
Найти высоту треугольника со сторонами 60, 46 и 44
Найти высоту треугольника со сторонами 117, 116 и 48
Найти высоту треугольника со сторонами 116, 106 и 82
Найти высоту треугольника со сторонами 91, 83 и 26
Найти высоту треугольника со сторонами 150, 142 и 112
Найти высоту треугольника со сторонами 60, 46 и 44