Рассчитать высоту треугольника со сторонами 65, 63 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{65 + 63 + 8}{2}} \normalsize = 68}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{68(68-65)(68-63)(68-8)}}{63}\normalsize = 7.85353452}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{68(68-65)(68-63)(68-8)}}{65}\normalsize = 7.61188731}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{68(68-65)(68-63)(68-8)}}{8}\normalsize = 61.8465844}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 65, 63 и 8 равна 7.85353452
Высота треугольника опущенная с вершины A на сторону BC со сторонами 65, 63 и 8 равна 7.61188731
Высота треугольника опущенная с вершины C на сторону AB со сторонами 65, 63 и 8 равна 61.8465844
Ссылка на результат
?n1=65&n2=63&n3=8
Найти высоту треугольника со сторонами 102, 102 и 24
Найти высоту треугольника со сторонами 119, 80 и 45
Найти высоту треугольника со сторонами 127, 94 и 48
Найти высоту треугольника со сторонами 147, 134 и 56
Найти высоту треугольника со сторонами 88, 75 и 71
Найти высоту треугольника со сторонами 104, 101 и 53
Найти высоту треугольника со сторонами 119, 80 и 45
Найти высоту треугольника со сторонами 127, 94 и 48
Найти высоту треугольника со сторонами 147, 134 и 56
Найти высоту треугольника со сторонами 88, 75 и 71
Найти высоту треугольника со сторонами 104, 101 и 53