Рассчитать высоту треугольника со сторонами 65, 64 и 35

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{65 + 64 + 35}{2}} \normalsize = 82}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{82(82-65)(82-64)(82-35)}}{64}\normalsize = 33.9364641}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{82(82-65)(82-64)(82-35)}}{65}\normalsize = 33.4143646}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{82(82-65)(82-64)(82-35)}}{35}\normalsize = 62.0552486}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 65, 64 и 35 равна 33.9364641
Высота треугольника опущенная с вершины A на сторону BC со сторонами 65, 64 и 35 равна 33.4143646
Высота треугольника опущенная с вершины C на сторону AB со сторонами 65, 64 и 35 равна 62.0552486
Ссылка на результат
?n1=65&n2=64&n3=35