Рассчитать высоту треугольника со сторонами 66, 40 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{66 + 40 + 30}{2}} \normalsize = 68}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{68(68-66)(68-40)(68-30)}}{40}\normalsize = 19.0199895}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{68(68-66)(68-40)(68-30)}}{66}\normalsize = 11.5272664}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{68(68-66)(68-40)(68-30)}}{30}\normalsize = 25.359986}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 66, 40 и 30 равна 19.0199895
Высота треугольника опущенная с вершины A на сторону BC со сторонами 66, 40 и 30 равна 11.5272664
Высота треугольника опущенная с вершины C на сторону AB со сторонами 66, 40 и 30 равна 25.359986
Ссылка на результат
?n1=66&n2=40&n3=30
Найти высоту треугольника со сторонами 138, 129 и 123
Найти высоту треугольника со сторонами 149, 83 и 79
Найти высоту треугольника со сторонами 146, 125 и 104
Найти высоту треугольника со сторонами 142, 137 и 44
Найти высоту треугольника со сторонами 145, 140 и 81
Найти высоту треугольника со сторонами 138, 134 и 91
Найти высоту треугольника со сторонами 149, 83 и 79
Найти высоту треугольника со сторонами 146, 125 и 104
Найти высоту треугольника со сторонами 142, 137 и 44
Найти высоту треугольника со сторонами 145, 140 и 81
Найти высоту треугольника со сторонами 138, 134 и 91