Рассчитать высоту треугольника со сторонами 66, 41 и 27

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{66 + 41 + 27}{2}} \normalsize = 67}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{67(67-66)(67-41)(67-27)}}{41}\normalsize = 12.8765705}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{67(67-66)(67-41)(67-27)}}{66}\normalsize = 7.99908167}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{67(67-66)(67-41)(67-27)}}{27}\normalsize = 19.5533108}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 66, 41 и 27 равна 12.8765705
Высота треугольника опущенная с вершины A на сторону BC со сторонами 66, 41 и 27 равна 7.99908167
Высота треугольника опущенная с вершины C на сторону AB со сторонами 66, 41 и 27 равна 19.5533108
Ссылка на результат
?n1=66&n2=41&n3=27