Рассчитать высоту треугольника со сторонами 66, 42 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{66 + 42 + 34}{2}} \normalsize = 71}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71(71-66)(71-42)(71-34)}}{42}\normalsize = 29.3896722}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71(71-66)(71-42)(71-34)}}{66}\normalsize = 18.7025187}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71(71-66)(71-42)(71-34)}}{34}\normalsize = 36.3048892}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 66, 42 и 34 равна 29.3896722
Высота треугольника опущенная с вершины A на сторону BC со сторонами 66, 42 и 34 равна 18.7025187
Высота треугольника опущенная с вершины C на сторону AB со сторонами 66, 42 и 34 равна 36.3048892
Ссылка на результат
?n1=66&n2=42&n3=34
Найти высоту треугольника со сторонами 53, 40 и 35
Найти высоту треугольника со сторонами 69, 46 и 43
Найти высоту треугольника со сторонами 60, 49 и 41
Найти высоту треугольника со сторонами 113, 71 и 64
Найти высоту треугольника со сторонами 114, 94 и 74
Найти высоту треугольника со сторонами 65, 35 и 31
Найти высоту треугольника со сторонами 69, 46 и 43
Найти высоту треугольника со сторонами 60, 49 и 41
Найти высоту треугольника со сторонами 113, 71 и 64
Найти высоту треугольника со сторонами 114, 94 и 74
Найти высоту треугольника со сторонами 65, 35 и 31