Рассчитать высоту треугольника со сторонами 66, 47 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{66 + 47 + 43}{2}} \normalsize = 78}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78(78-66)(78-47)(78-43)}}{47}\normalsize = 42.8829774}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78(78-66)(78-47)(78-43)}}{66}\normalsize = 30.5378778}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78(78-66)(78-47)(78-43)}}{43}\normalsize = 46.8720916}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 66, 47 и 43 равна 42.8829774
Высота треугольника опущенная с вершины A на сторону BC со сторонами 66, 47 и 43 равна 30.5378778
Высота треугольника опущенная с вершины C на сторону AB со сторонами 66, 47 и 43 равна 46.8720916
Ссылка на результат
?n1=66&n2=47&n3=43
Найти высоту треугольника со сторонами 142, 107 и 107
Найти высоту треугольника со сторонами 78, 67 и 12
Найти высоту треугольника со сторонами 112, 81 и 75
Найти высоту треугольника со сторонами 40, 33 и 30
Найти высоту треугольника со сторонами 147, 127 и 36
Найти высоту треугольника со сторонами 106, 96 и 47
Найти высоту треугольника со сторонами 78, 67 и 12
Найти высоту треугольника со сторонами 112, 81 и 75
Найти высоту треугольника со сторонами 40, 33 и 30
Найти высоту треугольника со сторонами 147, 127 и 36
Найти высоту треугольника со сторонами 106, 96 и 47