Рассчитать высоту треугольника со сторонами 66, 59 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{66 + 59 + 34}{2}} \normalsize = 79.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{79.5(79.5-66)(79.5-59)(79.5-34)}}{59}\normalsize = 33.9165025}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{79.5(79.5-66)(79.5-59)(79.5-34)}}{66}\normalsize = 30.3192977}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{79.5(79.5-66)(79.5-59)(79.5-34)}}{34}\normalsize = 58.8551073}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 66, 59 и 34 равна 33.9165025
Высота треугольника опущенная с вершины A на сторону BC со сторонами 66, 59 и 34 равна 30.3192977
Высота треугольника опущенная с вершины C на сторону AB со сторонами 66, 59 и 34 равна 58.8551073
Ссылка на результат
?n1=66&n2=59&n3=34
Найти высоту треугольника со сторонами 95, 91 и 42
Найти высоту треугольника со сторонами 131, 125 и 9
Найти высоту треугольника со сторонами 138, 109 и 41
Найти высоту треугольника со сторонами 148, 125 и 120
Найти высоту треугольника со сторонами 120, 113 и 109
Найти высоту треугольника со сторонами 140, 115 и 110
Найти высоту треугольника со сторонами 131, 125 и 9
Найти высоту треугольника со сторонами 138, 109 и 41
Найти высоту треугольника со сторонами 148, 125 и 120
Найти высоту треугольника со сторонами 120, 113 и 109
Найти высоту треугольника со сторонами 140, 115 и 110