Рассчитать высоту треугольника со сторонами 66, 60 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{66 + 60 + 30}{2}} \normalsize = 78}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78(78-66)(78-60)(78-30)}}{60}\normalsize = 29.9759904}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78(78-66)(78-60)(78-30)}}{66}\normalsize = 27.2509004}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78(78-66)(78-60)(78-30)}}{30}\normalsize = 59.9519808}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 66, 60 и 30 равна 29.9759904
Высота треугольника опущенная с вершины A на сторону BC со сторонами 66, 60 и 30 равна 27.2509004
Высота треугольника опущенная с вершины C на сторону AB со сторонами 66, 60 и 30 равна 59.9519808
Ссылка на результат
?n1=66&n2=60&n3=30
Найти высоту треугольника со сторонами 116, 98 и 31
Найти высоту треугольника со сторонами 41, 40 и 5
Найти высоту треугольника со сторонами 67, 40 и 33
Найти высоту треугольника со сторонами 97, 93 и 10
Найти высоту треугольника со сторонами 97, 96 и 61
Найти высоту треугольника со сторонами 94, 85 и 42
Найти высоту треугольника со сторонами 41, 40 и 5
Найти высоту треугольника со сторонами 67, 40 и 33
Найти высоту треугольника со сторонами 97, 93 и 10
Найти высоту треугольника со сторонами 97, 96 и 61
Найти высоту треугольника со сторонами 94, 85 и 42