Рассчитать высоту треугольника со сторонами 66, 62 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{66 + 62 + 26}{2}} \normalsize = 77}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{77(77-66)(77-62)(77-26)}}{62}\normalsize = 25.9663394}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{77(77-66)(77-62)(77-26)}}{66}\normalsize = 24.3926218}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{77(77-66)(77-62)(77-26)}}{26}\normalsize = 61.9197324}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 66, 62 и 26 равна 25.9663394
Высота треугольника опущенная с вершины A на сторону BC со сторонами 66, 62 и 26 равна 24.3926218
Высота треугольника опущенная с вершины C на сторону AB со сторонами 66, 62 и 26 равна 61.9197324
Ссылка на результат
?n1=66&n2=62&n3=26
Найти высоту треугольника со сторонами 119, 81 и 66
Найти высоту треугольника со сторонами 68, 47 и 35
Найти высоту треугольника со сторонами 109, 82 и 62
Найти высоту треугольника со сторонами 111, 95 и 86
Найти высоту треугольника со сторонами 127, 85 и 53
Найти высоту треугольника со сторонами 149, 145 и 101
Найти высоту треугольника со сторонами 68, 47 и 35
Найти высоту треугольника со сторонами 109, 82 и 62
Найти высоту треугольника со сторонами 111, 95 и 86
Найти высоту треугольника со сторонами 127, 85 и 53
Найти высоту треугольника со сторонами 149, 145 и 101