Рассчитать высоту треугольника со сторонами 66, 62 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{66 + 62 + 39}{2}} \normalsize = 83.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83.5(83.5-66)(83.5-62)(83.5-39)}}{62}\normalsize = 38.1416787}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83.5(83.5-66)(83.5-62)(83.5-39)}}{66}\normalsize = 35.8300618}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83.5(83.5-66)(83.5-62)(83.5-39)}}{39}\normalsize = 60.6354893}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 66, 62 и 39 равна 38.1416787
Высота треугольника опущенная с вершины A на сторону BC со сторонами 66, 62 и 39 равна 35.8300618
Высота треугольника опущенная с вершины C на сторону AB со сторонами 66, 62 и 39 равна 60.6354893
Ссылка на результат
?n1=66&n2=62&n3=39
Найти высоту треугольника со сторонами 85, 73 и 48
Найти высоту треугольника со сторонами 34, 21 и 21
Найти высоту треугольника со сторонами 116, 101 и 44
Найти высоту треугольника со сторонами 143, 78 и 78
Найти высоту треугольника со сторонами 129, 95 и 82
Найти высоту треугольника со сторонами 136, 115 и 65
Найти высоту треугольника со сторонами 34, 21 и 21
Найти высоту треугольника со сторонами 116, 101 и 44
Найти высоту треугольника со сторонами 143, 78 и 78
Найти высоту треугольника со сторонами 129, 95 и 82
Найти высоту треугольника со сторонами 136, 115 и 65