Рассчитать высоту треугольника со сторонами 66, 63 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{66 + 63 + 19}{2}} \normalsize = 74}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74(74-66)(74-63)(74-19)}}{63}\normalsize = 18.9988794}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74(74-66)(74-63)(74-19)}}{66}\normalsize = 18.135294}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74(74-66)(74-63)(74-19)}}{19}\normalsize = 62.9962845}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 66, 63 и 19 равна 18.9988794
Высота треугольника опущенная с вершины A на сторону BC со сторонами 66, 63 и 19 равна 18.135294
Высота треугольника опущенная с вершины C на сторону AB со сторонами 66, 63 и 19 равна 62.9962845
Ссылка на результат
?n1=66&n2=63&n3=19
Найти высоту треугольника со сторонами 109, 104 и 60
Найти высоту треугольника со сторонами 128, 105 и 86
Найти высоту треугольника со сторонами 89, 72 и 47
Найти высоту треугольника со сторонами 145, 100 и 73
Найти высоту треугольника со сторонами 89, 82 и 43
Найти высоту треугольника со сторонами 100, 98 и 65
Найти высоту треугольника со сторонами 128, 105 и 86
Найти высоту треугольника со сторонами 89, 72 и 47
Найти высоту треугольника со сторонами 145, 100 и 73
Найти высоту треугольника со сторонами 89, 82 и 43
Найти высоту треугольника со сторонами 100, 98 и 65