Рассчитать высоту треугольника со сторонами 67, 44 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{67 + 44 + 36}{2}} \normalsize = 73.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{73.5(73.5-67)(73.5-44)(73.5-36)}}{44}\normalsize = 33.0448899}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{73.5(73.5-67)(73.5-44)(73.5-36)}}{67}\normalsize = 21.7011217}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{73.5(73.5-67)(73.5-44)(73.5-36)}}{36}\normalsize = 40.3881987}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 67, 44 и 36 равна 33.0448899
Высота треугольника опущенная с вершины A на сторону BC со сторонами 67, 44 и 36 равна 21.7011217
Высота треугольника опущенная с вершины C на сторону AB со сторонами 67, 44 и 36 равна 40.3881987
Ссылка на результат
?n1=67&n2=44&n3=36
Найти высоту треугольника со сторонами 121, 99 и 76
Найти высоту треугольника со сторонами 74, 42 и 33
Найти высоту треугольника со сторонами 75, 66 и 63
Найти высоту треугольника со сторонами 91, 77 и 19
Найти высоту треугольника со сторонами 96, 75 и 30
Найти высоту треугольника со сторонами 96, 63 и 35
Найти высоту треугольника со сторонами 74, 42 и 33
Найти высоту треугольника со сторонами 75, 66 и 63
Найти высоту треугольника со сторонами 91, 77 и 19
Найти высоту треугольника со сторонами 96, 75 и 30
Найти высоту треугольника со сторонами 96, 63 и 35